

QUALITATIVE ANALYSIS OF INORGANIC SALT

Experiment Number. -----Aim:

Date: -----

To identify the anion and cation present in the given salt systematically.

PRE	PRELIMINARY EXAMINATION OF SAMPLE No:						
			e sample is:	Presence of:			
		В	lue	Cu ²⁺ ions			
		G	ireen	Cu ²⁺ or Ni ²⁺ ions			
		D	ark				
1	Colour of the sample is noted	y	ellow/Brown	Fe^{3+} or $\mathrm{Mn}(\mathrm{NO}_3)_2$			
		F	lesh or light pink	Mn ²⁺ ions			
		Y	ellowish brown	NH ₄ I salt			
		C	colourless / White	Absence of transition metal			
		C		cations.			
			Livid Blue	Presence of Pb^{2+} ion			
2	FLAME TEST: A <i>thick paste</i> of	the	flame				
	sample is prepared in con. HCl and	d is		Presence of Cu^{2+} ions.			
	shown to the non-luminous part of						
	Bunsen flame with the help of a glass		Crimson flame	Presence of Sr ²⁺ ions			
	rod.		Pale green flame	Presence of Ba ²⁺ ions			
			Brick red flame	Presence of Ca ²⁺ ion			

ANALYSIS OF ANIONS

3 A little of the sample is treated with dil. HCl acid				CO_3^{2-} ion he following test only if nee is seen in this test.	
4 A little of the sample is treated with con. H ₂ SO ₄ . White fuming, pungent su (HCl) produces dense wh mouth of NH ₄ OH bottle i the mouth of the test tube Note: Warm/Heat if neophysical sectors.			mes when wn near	Presence of Cl ion	
<u>play</u> <u>test.</u> seco	<u>e: Difference in heating</u> <u>s an important role in this</u> <u>Warming = Heat for 5 - 10</u> <u>nds</u> firmatory Tests for Carbon	Reddish brown gas (NO ₂) on boiling the mixture with copper turnings.		Presence of NO ₃ ion is confirmed.	
Pass the CO ₂ gas through clear limewater.		Lime water turns milky		CO_3^{2-} ion is confirmed	
Con	firmatory Tests for Chlorid	e (Cl [_]) ion.			

An aqueous solution of the sample is	Thick curd like white (AgCl)	
treated with dil. HNO ₃ followed by	precipitate dissolves in excess	Presence of Cl ion.
AgNO ₃ solution.	of NH ₄ OH solution.	

Confirmatory Test for Nitrate (NO₃⁻⁻) ion.

,	Treat an aqueous solution of the		
5	sample with dil. H ₂ SO ₄ , add freshly	A thin dark brown ring	
]	prepared FeSO ₄ solution and agitate	{[Fe(H ₂ O) ₅ NO]} forms at the junction	Presence of NO ₃
1	the mixture well. Now add con.	between the reaction mixture and	ion is confirmed.
]	H ₂ SO ₄ to the mixture drop wise	$con.H_2SO_4.$	
	along the inside wall of the test tube.		

Note:

- > Place the test tube containing the reaction mixture in beaker containing ~ 50 ml tap water and then only add con.H₂SO₄ to avoid temperature build up due to exothermic nature of the reaction.
- Mixing ratio: 1 ml of sample solution + 1ml dil.H₂SO₄ + 2 ml FeSO_{4 (aq)} and then add 1 ml of con. Sulphuric acid drop by drop.
- If precipitation takes during this test, add more dil.H₂SO₄ and then remove the precipitate by centrifugation.

Confirmatory Test for Sulphate (SO₄^{2—}) ion .

An aqueous solution of the sample is acidified with dil.HCl followed by the addition of BaCl ₂ solution.		$\begin{array}{l} \text{Presence} & \text{of} \\ \text{SO}_4{}^{2-}\text{ion} \end{array}$
An aqueous solution of the sample is acidified with dilute acetic acid followed by the addition of lead acetate [$(CH_3COO)_2$ Pb] solution.	A white precipitate (PbSO ₄) formed, which is soluble in Ammonium acetate [CH ₃ COONH ₄] solution.	SO ₄ ^{2—} ion is

ANALYSIS OF CATIONS

<u>Confirmatory Tests For NH4⁺ ion</u>			
Agitate a pinch of the solid salt sample with NaOH solution and note its smell. (Note: Release the gas near your nose)	Smell of ammonia (NH ₃), which produces dense white fumes when Con. HCl is shown near the mouth of the test tube.	$\mathrm{NH_4^+}$ confirmed.	ion
The solid salt sample is treated with NaOH solution followed by Nessler's reagent. Note: Do not shake the mixture.	A brown precipitate is formed. (NH ₂ .HgO.HgI)	NH4 ⁺ confirmed.	ion

INTER-GROUP SEPARATION OF CATIONS

A true solution of the salt is prepared in distilled water. Note:

- How to prepare? Start with a pinch of sample + 4ml of solvent. If it dissolves completely, then gradually increase the concentration by dissolving more salt.
- > If the sample is insoluble in water; try dissolving it in dil.HCl or dil.HNO₃

About 1 ml. of the sample solution is treated with dil. HCl	White precip	itate of PbCl ₂	Presence o	of group – I cations
Through the above solution H_2S gas is passed.	Black precip sulphide (Cu	itate of Copper S)	Presence o	of group – II cations
Note: ▶ H2S WORK: Dirty H2S your work. Students sho ▶ Reject any black precipi	uld ensure th	at they are neat	and clean l	before use.
To about 2ml. (If the sample in water; try dissolving it i dil.HNO3) of the salt solut saturated NH4Cl solution is a the mixture well and then NH4OH solution and agitate.Note: This solution may be call solution	e is insoluble n dil.HCl or ion 2 ml of added. Shake add 7ml of	Gelatinous precipitate of A hydroxide {Al(Brown precipit hydroxide {Fe(white Aluminium OH)3}	Presence of group – III cations
Through 2 ml of the of the above solution (group – III solution) H2S gas isDirty white p (ZnS)Buff precipita (MnS)		ate of Manganese	e sulphide	Presence of group – IV cations
Note: Reject any black precipit	ate obtained i	if the sample is r	not green in	colour
To 2ml of the group -1 (NH ₄) ₂ CO ₃ (Little excess) added	cess) solution is carbonate (BaCO ₃) Stron carbonate (SrCO3) or Calc carbonate (CaCO ₃)		D₃) StrontiO₃) or Calci	um Presence of group –
Confirmatory test for Magnesium (Mg ²⁺) ion				

Confirmatory test for Magnesium (Mg ²⁺) ion						
To 2ml of the group –III solution Di-						
sodium hydrogen phosphate is added.	White crystalline precipitate of	Presence of Mg ²⁺ ion				
(Note: Scratch the sides of the test tube	Magnesium phosphate	confirmed				
with a glass rod if necessary)						
2 Drops of salt solution are treated with		Presence of Mg ²⁺ ion				
3 drops of Magneson reagent and 3	Blue precipitate / solution	confirmed				
drops of NaOH solution		commed				

CONFIRMATORY TEST FOR CATIONS

	ANALYSIS OF GROUP – I CATION					
Confirmatory Tests For Lead (Pb ²⁺) Ion						
	To one portion of the sample solution add few Yellow precipitate of Presence of Pb^{2+} ion					
	drops of Potassium chromate (K ₂ CrO ₄) solution.	Lead	chromate	confirmed		

Г

	(PbCrO ₄)	
To another portion of the sample solution add few	Yellow precipitate of	Presence of Pb ²⁺ ion
drops of Potassium iodide (KI) solution.	Lead iodide (PbI ₂)	confirmed

	ANALYSIS OF GROUP – II CATIONS					
Confirmatory Tests For Copper (Cu ²⁺) Ion						
	To one portion of the sample solution	Deep	blue	solution,	Prese	nce of Cu ²⁺ ion
	add excess of NH ₄ OH solution	[Cu(NI	$H_3)_4](OH)_2$		confi	rmed
	Treat one portion of the above deep blue solution with dil. Acetic acid followed by few drops of K ₄ [Fe(CN) ₆] (Potassium Ferro cyanide) solution		Chocolate		oured	Presence of Cu ²⁺ ion
			precipitate Cu ₂ [Fe(CN		<i>)</i> 6]	confirmed

ANALYSIS OF GROUP – III CATIONS					
Confirmatory Tests For Aluminium (Al ³⁺) Ion					
To one portion of the sample solution NaC solution is added drop by drop.	H White precipitate, Al(OH) ₃ , dissolves in excess of NaOH	Presence of Al ³⁺ ion confirmed			
Another portion of the sample solution acidified with dil.HCl followed by the addition blue litmus solution. Shake the mixture well get a pink coloured solution. To this soluti NH ₄ OH solution is added drop wise witho shaking.	A floating blue precipitate is formed (It is called the "Floating blue lake)	Presence of Al ³⁺ ion confirmed			

	ANALYSIS OF GROUP – III CATIONS.				
Confirmatory Tests for Ferric (Fe ³⁺) Ion					
	To one part of the diluted salt solution	A Prussian blue	Fe ³⁺ ion		
	K ₄ [Fe(CN) ₆] (Potassium ferrocyanide) solution is	colouration Fe ₄ [Fe(CN) ₆] ₃	confirmed.		
	added.				
	To 2 nd part of the diluted salt solution Potassium	A blood red colouration	Fe ³⁺ ion		
	thiocyanate (KCNS) solution is added.	Fe(CNS) ₃	confirmed.		

	ANALYSIS OF GROUP – IV CATIONS.				
Confirmatory Tests for Zinc (Zn ²⁺) Ion					
	To one portion of the sample solution NaOH solution is added drop wise without shaking.	Whiteprecipitate{Zn(OH)2}dissolvesinexcess of NaOH(aq)	Zn ²⁺ ion confirmed.		
	To 2^{nd} part of the sample solution K ₄ [Fe(CN) ₆] (Potassium Ferr <u>o</u> cyanide) solution is added.		Zn ²⁺ ion confirmed.		

	ANALYSIS OF GROUP – IV CATIONS.				
Confirmatory Tests for Manganese (Mn ²⁺) Ion.					
	To one portion of the sample solution add NaOH solution drop wise without shaking.	A white precipitate {Mn(OH) ₂ } formed turns to brown (MnO ₂)	Mn ²⁺ ion confirmed.		
	¹ / ₄ spatula of solid sample is treated with ¹ / ₂ ml of con.HNO ₃ followed by the addition of 1 ml of				

	Sodium bismuthate solution ^{#.}	standing	g.			
	Note: Add water to get a colourless solution if					
	needed					
	ANALYSIS OF GROUP – IV CATIONS.					
Confirmatory Tests for Nickel (Ni ²⁺) Ion. (Note: All salts containing Ni are Greenish in colour)						
	To one portion of the sample solution add 10 d Dimethyl glyoxime reagent followed by excess of I solution.	-	A scarlet precipitate.	red	Ni ²⁺ ion confirmed	
	To the 2 nd portion of the sample solution add Br solution followed by NaOH solution, boil and the aside.		A precipitate.	black	Ni ²⁺ ion confirmed.	

ANALYSIS OF GROUP V CATIONS				
Confirmatory Tests for Barium (Ba ²⁺) ion				
To one portion of the sample solution add a few drops of Potassium chromate (K_2CrO_4) solution.	A yellow (BaCrO ₄) "precipitate".	Ba ²⁺ ion confirmed.		
 To another portion of the sample solution add a few drops of Dil.H₂SO₄ acid. Note: ▶ Do this test only if the K₂CrO₄ test is positive ▶ Do this test only as the 2nd confirmatory test for Ba²⁺. 	A white (BaSO ₄) precipitate.	Ba ²⁺ ion confirmed.		

	ANALYSIS OF GROUP V CATIONS					
Confir	Confirmatory Tests for Strontium (Sr ²⁺) ion					
	A portion of the sample solution is treated with acetic acid followed by ammonium sulphate solution	Scanty white (SrSO ₄) precipitate	Sr ²⁺ ion confirmed.			
	A <i>thick paste</i> of the sample is prepared in con. HCl and is shown to the non-luminous part of a Bunsen flame with the help of a glass rod.	Crimson coloured flame	Sr ²⁺ ion confirmed.			

ANALYSIS OF GROUP V CATIONS						
Confirmatory Tests Calcium (Ca ²⁺) ion.						
To one portion of the sample solution few drops of Ammonium Oxalate {(NH } solution.		Ca ²⁺ ion confirmed.				
Another portion is made " <u>neutral</u> " by adding NH ₄ OH followed by boiling till smell of NH ₃ is gone. Cool this solution and then add 2 drops of NH ₄ Cl and few drops of K ₄ [Fe(CN) ₆] solution.	 A white (Ca(NH₄)K[Fe(CN)₆] precipitate. Note: > Only a 'neutral' solution answers this test. > If the medium is acidic or alkaline, the test fails. 	Ca ²⁺ ion confirmed.				

REPORT:

The given sample has: - Cation:and the salt

is

Note: Use only ionic and molecular formulae for reporting

NOTES & USEFUL INFORMATION:

- 1. Always record the analysis in a tabular form. (i. e. draw three columns for recording "Experiment', 'Observation' and 'Inference')
- 2. Give continuous serial numbers to tests while recording the analysis in your book.
- 3. *"Notes"* given in this 'analysis handout' are hints only, hence should not be written in the journal.
- 4. Some Manganese salts show sparking flame when flame test is conducted.
- 5. **"DANGER!"** Hot concentrated reagents should not be thrown into sink. {Cool the out side of the test tube to room temperature under running tap water and then carefully dilute the mixture by adding tap water little by little. Once the mixture is safely diluted, it may be washed normally.}
- 6. Whenever solubility of a precipitate formed is tested, a small amount (a <u>drop</u>) of the precipitate should be transferred to another test tube and dissolve in <u>excess</u> amount of solvent. (Always show two test tubes for attestation of the work)
- 7. When chloride ion is detected with Cu^{2+} or Mn^{2+} ions, AgCl will not give a clear transparent solution with excess of NH₄OH (Solubility part of the 2nd confirmatory test). This may be avoided by washing the precipitate: [Centrifuge the mixture and discard the rest of the solution to separate AgCl. Add distilled water to the centrifuge tube, shake well to wash AgCl. Centrifuge again and discard water. Use the washed AgCl to do solubility test with NH₄OH.]
- 8. *Nessler's reagent test* should be conducted only after identifying the presence of NH₄⁺ ion using NaOH test. (Zn²⁺ & Mn²⁺ ions can also give brown precipitate with Nessler's reagent)
- 9. Confirmatory tests for cations can also be done using true solutions made from the precipitate obtained during Inter-group separation of the cation in suitable solvents.
- 10. Only Green or Blue salts will give black precipitate with H_2S gas. If black precipitate is obtained with salts that are not blue or green it is due to contamination of the solution and should be rejected.
- 11. # → Sodium Bismuthate solution: The reagent shows tendency to settle as it is sparingly soluble in distilled water. So whenever the reagent is used, do shake the reagent bottle well before transferring the reagent. Otherwise only supernatant water will get transferred to the test tube.
- 12. Second confirmatory test for Ni^{2+} ion may fail if Br_2 water used is weak.
- 13. *If chloride ion is confirmed with Calcium ion*: Neutralisation has to be compulsorily done as CaCl₂ shows acidic character.
- 14. 2^{nd} confirmatory test for Ca^{2+} ion: If the sample does not dissolve in distilled water, the true solution made should be properly neutralised as per the instruction given.
- 15. Write completed salt work in the Journal only after getting it corrected in the observation note book.